What is triploid endosperm

  • 1

    Friedman, W. E. Organismal duplication, inclusive fitness theory, and altruism: Understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl Acad. Sci. USA92, 3913–3917 (1995).

  • 2

    Palser, B. F. The bases of angiosperm phylogeny: embryology. Ann. Missouri Bot. Gard.62, 621–646 (1975).

  • 3

    Stebbins, G. L. Flowering Plants: Evolution Above the Species Level (Harvard Univ. Press, Cambridge, Massachusetts, 1974).

  • 4

    Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science286, 947–950 (1999).

  • 5

    Qui, Y.-L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature402, 404–407 (1999).

  • 6

    Soltis, P. S., Soltis, D. E. & Chase, M. W. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature402, 402–404 (1999).

  • 7

    Graham, S. W. & Olmstead, R. G. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am. J. Bot.87, 1712–1730 (2000).

  • 8

    Barkman, T. J., Chenery, G., McNeal, J. R., Lyons-Weiler, J. & dePamphilis, C. W. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA97, 13166–13171 (2000).

  • 9

    Endress, P. K. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci.162, 1111–1140 (2001).

  • 10

    Field, T. S. et al. Structure and function of tracheary elements in Amborella trichopoda. Int. J. Plant Sci.161, 705–712 (2000).

  • 11

    Friedman, W. E. & Floyd, S. K. The origin of flowering plants and their reproductive biology—a tale of two phylogenies. Evolution55, 217–231 (2001).

  • 12

    Friedman, W. E. Comparative embryology of basal angiosperms. Curr. Opin. Plant Biol.4, 14–20 (2001).

  • 13

    Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA96, 5952–5959 (1999).

  • 14

    Maheshwari, P. An Introduction to the Embryology of Angiosperms (McGraw-Hill, New York, 1950).

  • 15

    Johri, B. M., Ambegaokar, K. B. & Srivastava, P. S. Comparative Embryology of Angiosperms (Springer, Berlin, Germany, 1992).

  • 16

    Winter, A. N. & Shamrov, I. I. Development of the ovule and embryo sac in Nuphar lutea (Nymphaeaceae). Bot. Zhurnal76, 378–390 (1991).

  • 17

    Battaglia, E. The evolution of the female gametophyte of angiosperms: an interpretative key. (Embryological Questions 14). Ann. Bot.47, 7–144 (1989).

  • 18

    Orban, I. & Bouharmont, J. Megagametophyte development of Nymphaea nouchali Burm. f. (Nymphaeaceae). Bot. J. Linn. Soc.126, 339–348 (1998).

  • 19

    van Miegroet, F. & Dujardin, M. Cytologie et histologie de la reproduction chez le Nymphaea heudelottii. Can. J. Bot.70, 1991–1996 (1992).

  • 20

    Winter, A. N. & Shamrov, I. I. Megasporogenesis and embryo sac development in representatives of the genera Nymphaea and Victoria (Nymphaeaceae). Bot. Zhurnal76, 1716–1728 (1991).

  • 21

    Batygina, T. B., Shamrov, I. I. & Kolesova, G. E. Embryology of the Nymphaeales and Nelumbonales II. The development of the female embryonic structures. Bot. Zhurnal67, 1179–1195 (1982).

  • 22

    Galati, B. G. Estudios embriológicos en Cabomba australis (Nymphaeaceae) I. La esporogénesis y las generaciones sexuadas. Boletin Soc. Argentina Bot.24, 29–47 (1985).

  • 23

    Swamy, B. G. L. Macrogametophytic ontogeny in Schisandra chinensis. J. Indian Bot. Soc.43, 391–396 (1964).

  • 24

    Yoshida, O. Embryologische studien über Schisandra chinensis Bailey. J. Coll. Arts Sci. Chiba Univ.3, 459–462 (1962).

  • 25

    Solntseva, M. P. in Comparative Embryology of Flowering Plants (ed. Yakovlev, M. S.) 51–54 (Nauka, Leningrad, Russia, 1981) (in Russian).

  • 26

    Tobe, H., Jaffre, T. & Raven, P. H. Embryology of Amborella (Amborellaceae): descriptions and polarity of character states. J. Plant Res.113, 271–280 (2000).

  • 27

    Wilson, M. F. & Burley, N. Mate Choice in Plants: Tactics, Mechanisms, and Consequences (Princeton Univ. Press, Princeton, 1983).

  • 28

    Queller, D. C. in Oxford Surveys in Evolutionary Biology (eds Harvey, P. H. & Partridge, L.) 73–109 (Oxford Univ. Press, Oxford, 1989).

  • 29

    Chaw, S. M., Parkinson, C. L., Cheng, Y., Vincent, T. M. & Palmer, J. D. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA97, 4086–4091 (2000).

  • 30

    Bowe, L. M., Coat, G. & dePamphilis, C. W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc. Natl Acad. Sci. USA97, 4092–4097 (2000).